login
A244111
Primes p such that p + phi(p) + mu(phi(p)) is also prime.
1
19, 37, 97, 157, 199, 229, 271, 307, 337, 379, 577, 601, 661, 727, 811, 829, 877, 937, 997, 1009, 1069, 1171, 1237, 1279, 1297, 1429, 1459, 1531, 1609, 1657, 2029, 2089, 2137, 2179, 2221, 2281, 2467, 2539, 2551, 2557, 2617, 2719, 2791, 2851, 3037, 3061, 3109
OFFSET
1,1
COMMENTS
For these terms, mu(phi(p)) must be zero.
For prime p, phi(p) = p-1, so terms are primes p such that 2p-1 is also prime (A005382) and p-1 is not squarefree. - Jens Kruse Andersen, Jul 19 2014
LINKS
EXAMPLE
a(1)=19 as 19+18+0 is prime.
a(2)=37 as 37+36+0 is prime.
a(3)=97 as 97+96+0 is prime.
MAPLE
with(numtheory): A244111:=n->`if`(isprime(n+phi(n)+mobius(phi(n))) and isprime(n), n, NULL); seq(A244111(n), n=1..5000); # Wesley Ivan Hurt, Jul 19 2014
MATHEMATICA
apQ[n_]:=Module[{p=EulerPhi[n]}, PrimeQ[n+p+MoebiusMu[p]]]; Select[Prime[ Range[500]], apQ] (* Harvey P. Dale, Jun 13 2015 *)
PROG
(PARI) isok(n) = isprime(n) && isprime(n + eulerphi(n) + moebius(eulerphi(n))); \\ Michel Marcus, Jun 21 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Torlach Rush, Jun 20 2014
EXTENSIONS
More terms from Michel Marcus, Jun 21 2014
STATUS
approved