login
A357935
Primes p such that the sum of digits of 11*p is 11.
1
19, 37, 73, 919, 937, 991, 1873, 2791, 3637, 3673, 3691, 4591, 6373, 8191, 91837, 91873, 92737, 92791, 93637, 94573, 181837, 181873, 181891, 182773, 183637, 183691, 185491, 186391, 187273, 272737, 274591, 275491, 276373, 277273, 278191, 363691, 365473, 367273, 455473, 455491, 458191, 459091
OFFSET
1,1
COMMENTS
Primes in A279771.
All terms == 1 (mod 18).
Includes (8*10^k+3)/11 for k = 2, 6, 60, 320, 600. Any others?
LINKS
EXAMPLE
a(3) = 73 is a term because 73 is prime and 11*73 = 803 with 8+0+3 = 11.
MAPLE
filter:= proc(p) convert(convert(11*p, base, 10), `+`) = 11 and isprime(p):
select(filter, [seq(i, i=1..10^6, 18)]);
MATHEMATICA
Select[Prime[Range[40000]], Plus @@ IntegerDigits[11*#] == 11 &] (* Amiram Eldar, Oct 21 2022 *)
CROSSREFS
Sequence in context: A245381 A050528 A257074 * A299930 A053685 A244111
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Oct 21 2022
STATUS
approved