login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357938
Inverse Moebius transform of n * 2^omega(n).
1
1, 5, 7, 13, 11, 35, 15, 29, 25, 55, 23, 91, 27, 75, 77, 61, 35, 125, 39, 143, 105, 115, 47, 203, 61, 135, 79, 195, 59, 385, 63, 125, 161, 175, 165, 325, 75, 195, 189, 319, 83, 525, 87, 299, 275, 235, 95, 427, 113, 305, 245, 351, 107, 395, 253, 435, 273, 295, 119, 1001
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = 2 * (p^(e+1)-1) / (p-1) - 1 for prime p and e >= 0.
Dirichlet g.f.: (zeta(s-1))^2 * zeta(s) / zeta(2*s-2).
Dirichlet inverse equals Dirichlet convolution of A298473 and A008683.
MATHEMATICA
f[p_, e_] := 2*(p^(e + 1) - 1)/(p - 1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Oct 24 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, d * 2^omega(d)); \\ Michel Marcus, Oct 31 2022
(Python)
from math import prod
from sympy import factorint
def A357938(n): return prod(((p**(e+1)-1)//(p-1)<<1)-1 for p, e in factorint(n).items()) # Chai Wah Wu, Oct 31 2022
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Oct 24 2022
STATUS
approved