login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298473
a(n) = n * lambda(n) * 2^omega(n).
5
1, -4, -6, 8, -10, 24, -14, -16, 18, 40, -22, -48, -26, 56, 60, 32, -34, -72, -38, -80, 84, 88, -46, 96, 50, 104, -54, -112, -58, -240, -62, -64, 132, 136, 140, 144, -74, 152, 156, 160, -82, -336, -86, -176, -180, 184, -94, -192, 98, -200, 204, -208, -106, 216, 220, 224, 228, 232, -118, 480
OFFSET
1,2
COMMENTS
The sequence b(n) = abs(a(n)) = n * 2^omega(n) for n>=1 is multiplicative with b(p^e) = 2*p^e (p prime, e > 0) and is the Dirichlet inverse of a(n). The Dirichlet g.f. of b(n) is: (zeta(s-1))^2/zeta(2*s-2). For omega(n) and lambda(n) see A001221 and A008836, respectively.
LINKS
FORMULA
Multiplicative with a(p^e) = 2*(-p)^e (p prime, e>0).
Dirichlet inverse of abs(a(n)).
Dirichlet g.f.: zeta(2*s-2)/(zeta(s-1))^2.
Sum_{d|n} A000290(d)*a(n/d) = n*A060648(n).
Sum_{d|n} A078439(d)*a(n/d) = A008683(n).
O.g.f. for the unsigned sequence: Sum_{n >= 1} |a(n)|*x^n = Sum_{n >= 1} |mu(n)|*n*x^n/(1 - x^n)^2, where mu(n) = A008683(n) is the Möbius function. - Peter Bala, Mar 05 2022
EXAMPLE
a(6) = a(2)*a(3) = (-4)*(-6) = 24 = 6*1*2^2;
a(8) = a(2^3) = 2*(-2)^3 = -16 = 8*(-1)*2^1.
MAPLE
f:= proc(n) local t;
mul(2*(-t[1])^t[2], t=ifactors(n)[2])
end proc:
map(f, [$1..100]); # Robert Israel, Mar 06 2022
MATHEMATICA
Array[# (-1)^PrimeOmega[#]*2^PrimeNu[#] &, 60] (* Michael De Vlieger, Jan 20 2018 *)
PROG
(PARI) a(n) = n*(-1)^bigomega(n)*2^omega(n); \\ Michel Marcus, Jan 20 2018
KEYWORD
sign,mult
AUTHOR
Werner Schulte, Jan 19 2018
STATUS
approved