login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n * lambda(n) * 2^omega(n).
5

%I #25 Oct 24 2022 15:12:20

%S 1,-4,-6,8,-10,24,-14,-16,18,40,-22,-48,-26,56,60,32,-34,-72,-38,-80,

%T 84,88,-46,96,50,104,-54,-112,-58,-240,-62,-64,132,136,140,144,-74,

%U 152,156,160,-82,-336,-86,-176,-180,184,-94,-192,98,-200,204,-208,-106,216,220,224,228,232,-118,480

%N a(n) = n * lambda(n) * 2^omega(n).

%C The sequence b(n) = abs(a(n)) = n * 2^omega(n) for n>=1 is multiplicative with b(p^e) = 2*p^e (p prime, e > 0) and is the Dirichlet inverse of a(n). The Dirichlet g.f. of b(n) is: (zeta(s-1))^2/zeta(2*s-2). For omega(n) and lambda(n) see A001221 and A008836, respectively.

%H Robert Israel, <a href="/A298473/b298473.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = 2*(-p)^e (p prime, e>0).

%F Dirichlet inverse of abs(a(n)).

%F Dirichlet g.f.: zeta(2*s-2)/(zeta(s-1))^2.

%F Sum_{d|n} A000290(d)*a(n/d) = n*A060648(n).

%F Sum_{d|n} A078439(d)*a(n/d) = A008683(n).

%F O.g.f. for the unsigned sequence: Sum_{n >= 1} |a(n)|*x^n = Sum_{n >= 1} |mu(n)|*n*x^n/(1 - x^n)^2, where mu(n) = A008683(n) is the Möbius function. - _Peter Bala_, Mar 05 2022

%e a(6) = a(2)*a(3) = (-4)*(-6) = 24 = 6*1*2^2;

%e a(8) = a(2^3) = 2*(-2)^3 = -16 = 8*(-1)*2^1.

%p f:= proc(n) local t;

%p mul(2*(-t[1])^t[2],t=ifactors(n)[2])

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Mar 06 2022

%t Array[# (-1)^PrimeOmega[#]*2^PrimeNu[#] &, 60] (* _Michael De Vlieger_, Jan 20 2018 *)

%o (PARI) a(n) = n*(-1)^bigomega(n)*2^omega(n); \\ _Michel Marcus_, Jan 20 2018

%Y Cf. A000290, A001221, A001222, A008683, A008836, A060648, A078439.

%K sign,mult

%O 1,2

%A _Werner Schulte_, Jan 19 2018