login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294243
Sum of the larger parts of the partitions of 2n into two parts with smaller part nonsquarefree.
2
0, 0, 0, 4, 6, 8, 10, 20, 33, 39, 45, 63, 71, 79, 87, 111, 121, 149, 161, 193, 207, 221, 235, 273, 314, 332, 377, 425, 447, 469, 491, 545, 569, 593, 617, 677, 703, 729, 755, 821, 849, 877, 905, 977, 1052, 1084, 1116, 1196, 1279, 1365, 1403, 1493, 1533, 1627
OFFSET
1,4
FORMULA
a(n) = Sum_{i=1..n} (2*n - i) * (1 - mu(i)^2), where mu is the Möbius function (A008683).
MAPLE
N:= 100: # to get a(1)..a(N)
S:= ListTools:-PartialSums(map(t -> `if`(numtheory:-issqrfree(t), [0, 0], [1, t]), [$1..N])):
seq(2*n*S[n, 1]-S[n, 2], n=1..N); # Robert Israel, Oct 27 2017
MATHEMATICA
Table[Sum[(2 n - k) (1 - MoebiusMu[k]^2), {k, n}], {n, 80}]
Table[Total[Select[IntegerPartitions[2 n, {2}], !SquareFreeQ[#[[2]]]&][[;; , 1]]], {n, 60}] (* Harvey P. Dale, Apr 09 2023 *)
PROG
(PARI) a(n) = sum(i=1, n, (2*n-i)*(1-moebius(i)^2)); \\ Michel Marcus, Oct 27 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 25 2017
STATUS
approved