login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298476
Least k such that A298475(k) = n.
2
1, 2, 37, 203, 1332, 13428, 160884, 858740, 10295924, 54958708, 658938484, 3517356660
OFFSET
1,2
COMMENTS
A298474(n) = floor(log_2(a(n))) + 1.
FORMULA
a(n) >= 2^(A298474(n) - 1).
a(n) < 2^A298474(n).
EXAMPLE
The smallest partition of the binary representation of A298476(k) is:
k | A298476(k) | partition
--+------------+---------------------------------------
1 | 1 | (1)_2
2 | 2 | (1)(0)_2
3 | 37 | (1001)(0)(1)_2
4 | 203 | (11)(00)(101)(1)_2
5 | 1332 | (101)(00)(1)(101)(00)_2
6 | 13428 | (11)(010)(0)(01110)(1)(00)_2
7 | 160884 | (1001)(1)(101)(000)(111)(010)(0)_2
8 | 858740 | (11)(010)(0)(0110)(1001)(11)(010)(0)_2
MATHEMATICA
With[{s = {1, 2}~Join~Array[Function[w, Min@ Map[Length, Select[#, And[AllTrue[#, PalindromeQ], Union@ Map[Length, #] != {1}] &]] &@ Union@ Map[Select[SplitBy[#, IntegerQ], IntegerQ@ First@ # &] &, Map[Insert[w, ".", #] &, Map[{#} &, Rest@ Subsets@ Range@ Length@ w, {2}]]]]@ IntegerDigits[#, 2] &, 1400, 3]}, Array[FirstPosition[s, #][[1]] &, Max@ Take[#, 1 + LengthWhile[Differences@ #, # == 1 &]] &@ Union@ s]] (* Michael De Vlieger, Jan 23 2018 *)
PROG
(C) See Links section.
CROSSREFS
Sequence in context: A134596 A139119 A244757 * A302883 A053788 A078976
KEYWORD
nonn,base,more
AUTHOR
Peter Kagey, Jan 19 2018
EXTENSIONS
a(9)-a(12) from Rémy Sigrist, Dec 28 2019
STATUS
approved