login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357939
a(n) = Sum_{k=0..floor(n/2)} Stirling2(k,n - 2*k).
2
1, 0, 0, 1, 0, 1, 1, 1, 3, 2, 7, 7, 16, 26, 41, 92, 128, 317, 478, 1107, 1977, 4077, 8547, 16310, 37775, 71489, 170660, 339138, 795833, 1705058, 3876254, 8926023, 19888522, 48187837, 107726407, 267597455, 613509355, 1531527270, 3646775589, 9066267823
OFFSET
0,9
FORMULA
G.f.: Sum_{k>=0} x^(3*k)/Product_{j=1..k} (1 - j * x^2).
PROG
(PARI) a(n) = sum(k=0, n\2, stirling(k, n-2*k, 2));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/prod(j=1, k, 1-j*x^2)))
CROSSREFS
Cf. A357903.
Sequence in context: A324876 A226370 A054183 * A188656 A210204 A208657
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 21 2022
STATUS
approved