login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210204
Triangle of coefficients of polynomials v(n,x) jointly generated with A210203; see the Formula section.
4
1, 3, 2, 7, 8, 2, 15, 24, 12, 2, 31, 64, 48, 16, 2, 63, 160, 160, 80, 20, 2, 127, 384, 480, 320, 120, 24, 2, 255, 896, 1344, 1120, 560, 168, 28, 2, 511, 2048, 3584, 3584, 2240, 896, 224, 32, 2, 1023, 4608, 9216, 10752, 8064, 4032, 1344, 288, 36, 2, 2047
OFFSET
1,2
COMMENTS
Column 1: -1+2^n.
Row sums: A048473.
Alternating row sums: 1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
Row sums without first column give A056182. - Alois P. Heinz, Jan 14 2022
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....2
7....8....2
15...24...12...2
31...64...48...16...2
First three polynomials v(n,x): 1, 3 + 2x , 7 + 8x + 2x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210203 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210204 *)
CROSSREFS
Cf. A056182.
Sequence in context: A054183 A357939 A188656 * A208657 A329940 A074680
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved