login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210202
Triangle of coefficients of polynomials v(n,x) jointly generated with A210201; see the Formula section.
3
1, 2, 3, 4, 7, 6, 7, 17, 17, 12, 12, 35, 50, 40, 24, 20, 70, 120, 135, 92, 48, 33, 134, 275, 365, 346, 208, 96, 54, 251, 593, 930, 1033, 856, 464, 192, 88, 461, 1236, 2206, 2874, 2784, 2064, 1024, 384, 143, 835, 2500, 5015, 7389, 8355, 7240, 4880
OFFSET
1,2
COMMENTS
Column 1: F(n+2)-1, where F=A000045 (Fibonacci numbers)
Row sums: A048473
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....3
4....7....6
7....17...17...12
12...35...50...40...24
First three polynomials v(n,x): 1, 2 + 3x , 4 + 7x + 6x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210201 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210202 *)
CROSSREFS
Sequence in context: A120225 A247798 A130685 * A358201 A358176 A359682
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved