login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048473
a(0)=1, a(n) = 3*a(n-1) + 2; a(n) = 2*3^n - 1.
54
1, 5, 17, 53, 161, 485, 1457, 4373, 13121, 39365, 118097, 354293, 1062881, 3188645, 9565937, 28697813, 86093441, 258280325, 774840977, 2324522933, 6973568801, 20920706405, 62762119217, 188286357653, 564859072961, 1694577218885, 5083731656657, 15251194969973
OFFSET
0,2
COMMENTS
The number of triangles (of all sizes, including holes) in Sierpiński's triangle after n inscriptions. - Lee Reeves, May 10 2004
The sequence is not only related to Sierpiński's triangle, but also to "Floret's cube" and the quaternion factor space Q X Q / {(1,1), (-1,-1)}. It can be written as a_n = ves((A+1)x)^n) as described at the Math Forum Discussions link. - Creighton Dement, Jul 28 2004
Relation to C(n) = Collatz function iteration using only odd steps: If we look for record subsequences where C(n) > n, this subsequence starts at 2^n - 1 and stops at the local maximum of 2*3^n - 1. Examples: [3,5], [7,11,17], [15,23,35,53], ..., [127,191,287,431,647,971,1457]. - Lambert Klasen, Mar 11 2005
Group the natural numbers so that the (2n-1)-th group sum is a multiple of the (2n)-th group containing one term. (1,2),(3),(4,5,6,7,8,9,10,11),(12),(13,14,15,16,17,18,19,...,38),(39),(40,41,...,118,119),(120), (121,122,123,...) ... a(n) = {the sum of the terms of (2n-1)-th group}/{the term of (2n)th group}. The first term of the odd numbered group is given by A003462. The only term of even numbered group is given by A029858. - Amarnath Murthy, Aug 01 2005
a(n)+1 = A008776(n); it appears that this gives the number of terms in the (n+1)-th "gap" of numbers missing in A171884. - M. F. Hasler, May 09 2013
Sum of n-th row of triangle of powers of 3: 1; 1 3 1; 1 3 9 3 1; 1 3 9 27 9 3 1; ... - Philippe Deléham, Feb 23 2014
For n >= 3, also the number of dominating sets in the n-helm graph. - Eric W. Weisstein, May 28 2017
The number of elements of length <= n in the free group on two generators. - Anton Mellit, Aug 10 2017
In general, a first order inhomogeneous recurrence of the form s(0) = a, s(n)= m*s(n-1) + k, n>0, will have a closed form of a*m^n +((m^n-1)/(m-1))*k. - Gary Detlefs, Jun 07 2024
REFERENCES
Theoni Pappas, Math Stuff, Wide World Publ/Tetra, San Carlos CA, page 15, 2002
LINKS
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Helm Graph
FORMULA
n-th difference of a(n), a(n-1), ..., a(0) is 2^(n+1) for n=1, 2, 3, ...
a(0)=1, a(n) = a(n-1) + 3^n + 3^(n-1). - Lee Reeves, May 10 2004
a(n) = (3^n + 3^(n+1) - 2)/2. - Creighton Dement, Jul 31 2004
(1, 5, 17, 53, 161, ...) = Ternary (1, 12, 122, 1222, 12222, ...). - Gary W. Adamson, May 02 2005
Row sums of triangle A134347. Also, binomial transform of A046055: (1, 4, 8, 16, 32, 64, ...); and double binomial transform of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
G.f.:(1+x)/((1-3*x)(1-x)). - Zerinvary Lajos, Jan 11 2009; corrected by R. J. Mathar, Jan 21 2009
a(0)=1, a(1)=5, a(n) = 4*a(n-1) - 3*a(n-2). - Harvey P. Dale, Mar 06 2012
a(n) = Sum_{k=0..n} A112468(n,k)*4^k. - Philippe Deléham, Feb 23 2014
EXAMPLE
a(0) = 1;
a(1) = 1 + 3 + 1 = 5;
a(2) = 1 + 3 + 9 + 3 + 1 = 17;
a(3) = 1 + 3 + 9 + 27 + 9 + 3 + 1 = 53; etc. - Philippe Deléham, Feb 23 2014
MAPLE
g:= ((1+x)/(1-3*x)/(1-x)): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # Zerinvary Lajos, Jan 11 2009; typo fixed by Marko Mihaily, Mar 07 2009
MATHEMATICA
NestList[3 # + 2 &, 1, 30] (* Harvey P. Dale, Mar 06 2012 *)
LinearRecurrence[{4, -3}, {1, 5}, 30] (* Harvey P. Dale, Mar 06 2012 *)
Table[2 3^n - 1, {n, 20}] (* Eric W. Weisstein, May 28 2017 *)
2 3^Range[20] - 1 (* Eric W. Weisstein, May 28 2017 *)
PROG
(Magma) [2*3^n - 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
(PARI) first(m)=vector(m, n, n--; 2*3^n - 1) \\ Anders Hellström, Dec 11 2015
CROSSREFS
a(n)=T(2, n), array T given by A048471.
Cf. A003462, A029858. A column of A119725.
Sequence in context: A027028 A176086 A154992 * A178828 A242429 A097160
KEYWORD
nonn,easy
EXTENSIONS
Better description from Amarnath Murthy, May 27 2001
STATUS
approved