This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119725 Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k). 6
 1, 1, 1, 1, 5, 1, 1, 13, 17, 1, 1, 29, 73, 53, 1, 1, 61, 233, 325, 161, 1, 1, 125, 649, 1349, 1297, 485, 1, 1, 253, 1673, 4645, 6641, 4861, 1457, 1, 1, 509, 4105, 14309, 27217, 29645, 17497, 4373, 1, 1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Second column is like A036563. Second diagonal is A048473. LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened Termeszet Vilaga A XI. Természet-Tudomány Diákpályázat díjnyertesei 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): Pascal-tipusu haromszogek EXAMPLE Triangle begins:   1;   1,    1;   1,    5,    1;   1,   13,   17,     1;   1,   29,   73,    53,     1;   1,   61,  233,   325,   161,      1;   1,  125,  649,  1349,  1297,    485,      1;   1,  253, 1673,  4645,  6641,   4861,   1457,     1;   1,  509, 4105, 14309, 27217,  29645,  17497,  4373,     1;   1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1; MAPLE T:= proc(n, k) option remember;       if k=1 and k=n then 1     else 3*T(n-1, k-1) + 2*T(n-1, k)       fi     end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019 MATHEMATICA T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 3*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *) PROG (PARI) T(n, k) = if(k==1 || k==n, 1, 3*T(n-1, k-1) + 2*T(n-1, k)); \\ G. C. Greubel, Nov 18 2019 (MAGMA) function T(n, k)   if k eq 1 or k eq n then return 1;   else return 3*T(n-1, k-1) + 2*T(n-1, k);   end if;   return T; end function; [T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019 (Sage) @CachedFunction def T(n, k):     if (k==1 or k==n): return 1     else: return 3*T(n-1, k-1) + 2*T(n-1, k) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019 CROSSREFS Cf. A007318, A036563, A048473, A119726, A119727. Sequence in context: A299821 A299721 A300342 * A239279 A278880 A111910 Adjacent sequences:  A119722 A119723 A119724 * A119726 A119727 A119728 KEYWORD easy,nonn,tabl AUTHOR Zerinvary Lajos, Jun 14 2006 EXTENSIONS Edited by Don Reble, Jul 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 21:48 EST 2019. Contains 329809 sequences. (Running on oeis4.)