Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:25
%S 1,1,1,1,5,1,1,13,17,1,1,29,73,53,1,1,61,233,325,161,1,1,125,649,1349,
%T 1297,485,1,1,253,1673,4645,6641,4861,1457,1,1,509,4105,14309,27217,
%U 29645,17497,4373,1,1,1021,9737,40933,97361,140941,123929,61237,13121,1
%N Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k).
%C Second column is like A036563.
%C Second diagonal is A048473.
%H G. C. Greubel, <a href="/A119725/b119725.txt">Rows n = 1..100 of triangle, flattened</a>
%H Termeszet Vilaga A XI. Természet-Tudomány Diákpályázat díjnyertesei 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): <a href="http://www.termeszetvilaga.hu/tv2002/tv0206/tartalom.html">Pascal-tipusu haromszogek</a>
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 5, 1;
%e 1, 13, 17, 1;
%e 1, 29, 73, 53, 1;
%e 1, 61, 233, 325, 161, 1;
%e 1, 125, 649, 1349, 1297, 485, 1;
%e 1, 253, 1673, 4645, 6641, 4861, 1457, 1;
%e 1, 509, 4105, 14309, 27217, 29645, 17497, 4373, 1;
%e 1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1;
%p T:= proc(n, k) option remember;
%p if k=1 and k=n then 1
%p else 3*T(n-1, k-1) + 2*T(n-1, k)
%p fi
%p end:
%p seq(seq(T(n, k), k=1..n), n=1..12); # _G. C. Greubel_, Nov 18 2019
%t T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 3*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* _G. C. Greubel_, Nov 18 2019 *)
%o (PARI) T(n,k) = if(k==1 || k==n, 1, 3*T(n-1,k-1) + 2*T(n-1,k)); \\ _G. C. Greubel_, Nov 18 2019
%o (Magma)
%o function T(n,k)
%o if k eq 1 or k eq n then return 1;
%o else return 3*T(n-1,k-1) + 2*T(n-1,k);
%o end if;
%o return T;
%o end function;
%o [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 18 2019
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (k==1 or k==n): return 1
%o else: return 3*T(n-1, k-1) + 2*T(n-1, k)
%o [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Nov 18 2019
%Y Cf. A007318, A036563, A048473, A119726, A119727.
%K easy,nonn,tabl
%O 1,5
%A _Zerinvary Lajos_, Jun 14 2006
%E Edited by _Don Reble_, Jul 24 2006