login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299821
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 42, 39, 42, 1, 1, 127, 202, 202, 127, 1, 1, 389, 894, 2101, 894, 389, 1, 1, 1192, 4507, 18101, 18101, 4507, 1192, 1, 1, 3645, 22684, 176353, 302780, 176353, 22684, 3645, 1, 1, 11161, 116651, 1735393, 5678641, 5678641
OFFSET
1,5
COMMENTS
Table starts
.1.....1......1.........1...........1.............1................1
.1.....5.....13........42.........127...........389.............1192
.1....13.....39.......202.........894..........4507............22684
.1....42....202......2101.......18101........176353..........1735393
.1...127....894.....18101......302780.......5678641........107544794
.1...389...4507....176353.....5678641.....203062719.......7338573888
.1..1192..22684...1735393...107544794....7338573888.....506116118801
.1..3645.116651..17279857..2047783162..266405977942...35028322225854
.1.11161.605727.173340585.39237426288.9728685869763.2438361076801151
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +5*a(n-2) +4*a(n-3)
k=3: [order 14] for n>16
k=4: [order 38] for n>39
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..1
..1..1..1..1. .0..1..1..1. .0..0..1..0. .0..0..0..0. .0..0..1..1
..0..1..1..1. .0..0..0..0. .0..1..1..1. .0..0..0..0. .1..0..0..0
..1..1..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..0. .0..0..0..0
..1..0..0..1. .0..0..0..0. .0..1..1..1. .1..0..1..1. .1..0..0..0
CROSSREFS
Column 2 is A298234.
Sequence in context: A299135 A299893 A299060 * A299721 A300342 A119725
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 19 2018
STATUS
approved