login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299824 a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)!. 4
2, 22, 309, 5428, 115155, 2869242, 82187658, 2661876168, 96202473183, 3838516103310, 167606767714397, 7949901069639228, 407048805012563038, 22376916254447538882, 1314573505901491675965, 82188946843192555474704, 5448870914168179374456623, 381819805747937892412056342 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For m>1, A242817(m) and a(m-1) are also the m-th and (m+1)-st terms of the sequences "Number of ways of placing X labeled balls into X unlabeled (but (m-1)-colored) boxes". For instance, sequence A144180 for 5-colored boxes (m = 6), has A144180(6) = 12880, and A144180(7) = 115155, which are A242817(6) and a(5) respectively. Same pattern can be observed for A027710, A144223, A144263 (comment added after Omar E. Pol's formula).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..368

FORMULA

a(n) = A189233(n+1,n). - Omar E. Pol, Feb 24 2018

a(n) ~ exp(n/LambertW(1) - 2*n) * n^(n + 1) / (sqrt(1 + LambertW(1)) * LambertW(1)^(n + 1)). - Vaclav Kotesovec, Mar 08 2018

Or: a(n) ~ (1/sqrt(1+w)) * exp(1/w-2)^n * (n/w)^(n+1), with w = LambertW(1) ~ 0.56714329... The relative error decreases from 10^-2 for a(2) to 10^-3 for a(15), but reaches 10^-3.5 only at a(45). - M. F. Hasler, Mar 09 2018

EXAMPLE

a(4) = (1/e^4)*Sum_{j >= 1} j^4 * 4^j / (j-1)! = 5428.

PROG

(PARI) a(n) = round(exp(-n)*suminf(j = 1, (j^n)*(n^j)/(j-1)!)); \\ Michel Marcus, Feb 24 2018

(PARI) A299824(n, f=exp(n), S=n/f, t)=for(j=2, oo, S+=(t=j^n*n^j)/(f*=j-1); t<f&&j>n&&return(ceil(S))) \\ For n > 23, use \p## with some ## >= 2n. - M. F. Hasler, Mar 09 2018

CROSSREFS

Cf. A027710, A144180, A144223, A144263, A189233, A242817, A292860.

Sequence in context: A156505 A256928 A349107 * A355724 A266888 A155674

Adjacent sequences:  A299821 A299822 A299823 * A299825 A299826 A299827

KEYWORD

nonn

AUTHOR

Pedro Caceres, Feb 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 02:34 EDT 2022. Contains 356204 sequences. (Running on oeis4.)