login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355724
Row 4 of table A355721.
4
1, 2, 22, 314, 5326, 102722, 2197558, 51355514, 1297759918, 35208930050, 1020115715542, 31432396066106, 1026506419425550, 35428218801977666, 1288967076156307702, 49323199246104202874, 1980947315202528449518, 83342865788161594337282, 3666525676611059535630742
OFFSET
0,2
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
O.g.f: A(x) = ( Sum_{k >= 0} d(k+4)/d(4)*x^k )/( Sum_{k >= 0} d(k+3)/d(3)*x^k ), where d(n) = Product_{k = 1..n} (2*k-1) = A001147(n).
A(x) = 1/(1 + 7*x - 9*x/(1 + 9*x - 11*x/(1 + 11*x - 13*x/(1 + 13*x - ... )))).
The o.g.f. satisfies the Riccati differential equation 2*x^2*A'(x) + 7*x*A(x)^2 - (1 + 5*x)*A(x) + 1 = 0 with A(0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 2*x/(1 - 9*x/(1 - 4*x/(1 - 11*x/(1 - 6*x/(1 - 13*x/(1 - ... - 2*n*x/(1 - (2*n+7)*x )))))))), a continued fraction of Stieltjes-type.
MAPLE
n := 4: seq(coeff(series( hypergeom([n+1/2, 1], [], 2*x)/hypergeom([n-1/2, 1], [], 2*x ), x, 21), x, k), k = 0..20);
CROSSREFS
Cf. A001147, A355721 (table), A112934 (row 0), A000698 (row 1), A355722 (row 2), A355723 (row 3), A355725 (row 5).
Sequence in context: A349107 A368447 A299824 * A266888 A155674 A279619
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 15 2022
STATUS
approved