login
A112934
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A001147(n-k), where A001147 = double factorial numbers.
26
1, 1, 2, 6, 26, 158, 1282, 13158, 163354, 2374078, 39456386, 737125446, 15279024026, 347786765150, 8621313613954, 231139787526822, 6663177374810266, 205503866668090750, 6751565903597571842
OFFSET
0,3
LINKS
FORMULA
INVERT transform of double factorials (A001147), shifted right one place, where g.f. A(x) satisfies: A(x) = 1 + x*[d/dx x*A(x)^2]/A(x)^2.
G.f. A(x) satisfies: A(x) = 1+x + 2*x^2*[d/dx A(x)]/A(x) (log derivative).
G.f.: A(x) = 1+x +2*x^2/(1-3*x -2*2*1*x^2/(1-7*x -2*3*3*x^2/(1-11*x -2*4*5*x^2/(1-15*x - ... -2*n*(2*n-3)*x^2/(1-(4*n-1)*x - ...)))) (continued fraction).
G.f.: A(x) = 1/(1-x/(1 -1*x/(1-2*x/(1 -3*x/(1-4*x(1 - ...))))))) (continued fraction).
From Paul Barry, Dec 04 2009: (Start)
The g.f. of a(n+1) is 1/(1-2x/(1-x/(1-4x/(1-3x/(1-6x/(1-5x/(1-.... (continued fraction).
The Hankel transform of a(n+1) is A137592. (End)
a(n) = Sum_{k=0..n} A111106(n,k). - Philippe Deléham, Jun 20 2006
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) is the upper left term in M^n, M = the production matrix:
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 3, 4;
1, 1, 2, 3, 4, 5;
... (End)
From Gary W. Adamson, Jul 21 2016: (Start)
Another production matrix Q is:
1, 1, 0, 0, 0, ...
1, 0, 3, 0, 0, ...
1, 0, 0, 5, 0, ...
1, 0, 0, 0, 7, ...
...
The sequence is generated by extracting the upper left term of powers of Q. By extracting the top row of Q^n, we obtain a triangle with the sequence in the left column and row sums = (1, 2, 6, 26, 158, ...): (1), (1, 1), (2, 1, 3), (6, 2, 3, 15), (26, 6, 6, 15, 105), ... (End)
a(n) = (2*n - 1) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
G.f.: 1 / (1 - b(0)*x / (1 - b(1)*x / ...)) where b = A028310. - Michael Somos, Mar 31 2012
From Sergei N. Gladkovskii, Aug 11 2012, Aug 12 2012, Dec 26 2012, Mar 20 2013, Jun 02 2013, Aug 14 2013, Oct 22 2013: (Start) Continued fractions:
G.f. 1/(G(0)-x) where G(k) = 1 - x*(k+1)/G(k+1).
G.f. 1 + x/(G(0)-x) where G(k) = 1 - x*(k+1)/G(k+1).
G.f.: A(x) = 1 + x/(G(0) - x) where G(k) = 1 + (2*k+1)*x - x*(2*k+2)/G(k+1).
G.f.: Q(0) where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+2)/Q(k+1)).
G.f.: 2/G(0) where G(k) = 1 + 1/(1 - x/(x + 1/(2*k-1)/G(k+1))).
G.f.: 3*x - G(0) where G(k) = 3*x - 2*x*k - 1 - x*(2*k-1)/G(k+1).
G.f.: 1 + x*Q(0) where Q(k) = 1 - x*(2*k+2)/(x*(2*k+2) - 1/(1 - x*(2*k+1)/(x*(2*k+1) - 1/Q(k+1)))). (End)
a(n) ~ n^(n-1) * 2^(n-1/2) / exp(n). - Vaclav Kotesovec, Feb 22 2014
EXAMPLE
A(x) = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 158*x^5 + 1282*x^6 + ...
1/A(x) = 1 - x - x^2 - 3*x^3 - 15*x^4 - 105*x^5 - ... - A001147(n)*x^(n+1) - ...
a(4) = a(3+1) = Sum_{k=0..3} a(k)*A001147(3-k) = a(0)*5!! + a(1)*3!! + a(2)*1 + a(3)*1 = 1*15 + 1*3 + 2*1 + 6*1 = 26. - Michael B. Porter, Jul 22 2016
MAPLE
a_list := proc(len) local A, n; A[0] := 1; A[1] := 1;
for n from 2 to len-1 do A[n] := (2*n-1)*A[n-1] - add(A[j]*A[n-j], j=1..n-1) od;
convert(A, list) end: a_list(19); # Peter Luschny, May 22 2017
# Alternative:
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (n - k) * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..18); # Peter Luschny, Oct 02 2023
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[a[k]*(2n - 2k - 3)!!, {k, 0, n - 1}]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Oct 12 2005 *)
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+2*x^2*deriv(F)/F); return(polcoeff(F, n, x))}
(PARI) {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 1) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved