login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112938
INVERT transform (with offset) of quadruple factorials (A008545), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^4]/A(x)^4.
12
1, 1, 4, 28, 292, 4156, 75844, 1694812, 44835172, 1369657468, 47422855300, 1834403141788, 78377228106148, 3664969183404220, 186134931067171012, 10201887125268108508, 600142156513333537252, 37713563573426417361148
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1+x + 4*x^2*[d/dx A(x)]/A(x) (log derivative).
G.f.: A(x) = 1+x +4*x^2/(1-7*x -4*2*3*x^2/(1-15*x -4*3*7*x^2/(1-23*x -4*4*11*x^2/(1-31*x -... -4*n*(4*n-5)*x^2/(1-(8*n-1)*x -...)))) (continued fraction).
G.f.: A(x) = 1/(1-1*x/(1 -3*x/(1-4*x/(1 -7*x/(1-8*x/(1 -11*x/(1-12*x/(1 -...)))))))) (continued fraction).
G.f.: Q(0) where Q(k) = 1 - x*(4*k-1)/(1 - x*(4*k+4)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 1 + 2*x/G(0), where G(k)= 1 + 1/(1 - 2*x*(4*k+4)/(2*x*(4*k+4) - 1 + 2*x*(4*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) ~ (n-1)! * 4^(n-1) / (GAMMA(3/4) * n^(1/4)). - Vaclav Kotesovec, Feb 22 2014
EXAMPLE
A(x) = 1 + x + 4*x^2 + 28*x^3 + 292*x^4 + 4156*x^5 + ...
1/A(x) = 1 - x - 3*x^2 - 21*x^3 - 231*x^4 -... -A008545(n)*x^(n+1)-...
MATHEMATICA
CoefficientList[Series[1/(1 + 1/4*ExpIntegralE[3/4, -1/(4*x)]/E^(1/(4*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+4*x^2*deriv(F)/F); return(polcoeff(F, n, x))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2005
STATUS
approved