login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201354
Expansion of e.g.f. exp(x) / (4 - 3*exp(x)).
15
1, 4, 28, 292, 4060, 70564, 1471708, 35810212, 995827420, 31153998244, 1082931514588, 41407678132132, 1727226633730780, 78051253062575524, 3798351192214837468, 198049421007186054052, 11014905131587945490140, 650903915009792820650404, 40726453234725158535472348
OFFSET
0,2
LINKS
FORMULA
O.g.f.: A(x) = Sum_{n>=0} n! * 4^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 4*x/(1-3*x/(1 - 8*x/(1-6*x/(1 - 12*x/(1-9*x/(1 - 16*x/(1-12*x/(1 - 20*x/(1-15*x/(1 - ...)))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 4^k * Stirling2(n,k) * k!.
a(n) = 4*A050352(n) for n>0.
a(n) = Sum_{k=0..n} A123125(n,k)*4^k*3^(n-k). - Philippe Deléham, Nov 30 2011
a(n) = log(4/3) * Integral_{x = 0..oo} (ceiling(x))^n * (4/3)^(-x) dx. - Peter Bala, Feb 06 2015
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 6*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) ~ n! / (3*(log(4/3))^(n+1)). - Vaclav Kotesovec, Jun 13 2013
a(n) = 1 + 3 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -4*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 4*a(n-1) + 3*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (4/3)*A032033(n) - (1/3)*0^n. - Seiichi Manyama, Dec 21 2023
EXAMPLE
E.g.f.: E(x) = 1 + 4*x + 28*x^2/2! + 292*x^3/3! + 4060*x^4/4! + 70564*x^5/5! + ...
O.g.f.: A(x) = 1 + 4*x + 28*x^2 + 292*x^3 + 4060*x^4 + 70564*x^5 + ...
where A(x) = 1 + 4*x/(1+x) + 2!*4^2*x^2/((1+x)*(1+2*x)) + 3!*4^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*4^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
MAPLE
seq(coeff(series(1/(4*exp(-x) -3), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
MATHEMATICA
Table[Sum[(-1)^(n-k)*4^k*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 13 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(4 - 3*exp(x+x*O(x^n))), n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, 4^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
(PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, (-1)^(n-k)*4^k*Stirling2(n, k)*k!)}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( 1/(4*Exp(-x) -3) ))); // G. C. Greubel, Jun 08 2020
(Sage) [sum( (-1)^(n-j)*4^j*factorial(j)*stirling_number2(n, j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 30 2011
STATUS
approved