login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136728
E.g.f.: A(x) = (exp(x)/(4 - 3*exp(x)))^(1/4).
7
1, 1, 4, 31, 349, 5146, 93799, 2036161, 51283894, 1470035101, 47250248569, 1683031711516, 65800765032589, 2801364476781781, 129003301751229364, 6389120632590635971, 338644807090096148809, 19126604338708282552186
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x) = 1 + integral( A(x)^5 * exp(-x) ).
O.g.f.: 1/(1 - x/(1-3*x/(1 - 5*x/(1-6*x/(1 - 9*x/(1-9*x/(1 - 13*x/(1-12*x/(1 - 17*x/(1-15*x/(1 - ...)))))))))), a continued fraction.
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+1)/( 1 - 3*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * Gamma(3/4)/(sqrt(2)*3^(1/4)*n^(3/4)*Pi*log(4/3)^(n+1/4)). - Vaclav Kotesovec, Jun 15 2013
a(n) = 1 + 3 * Sum_{k=1..n-1} (binomial(n,k) - 1) * a(k). - Ilya Gutkovskiy, Jul 09 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (3*k/n - 4) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + 3*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
MATHEMATICA
CoefficientList[Series[(E^x/(4-3*E^x))^(1/4), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 15 2013 *)
PROG
(PARI) a(n)=n!*polcoeff((exp(x +x*O(x^n))/(4-3*exp(x +x*O(x^n))))^(1/4), n)
(PARI) /* As solution to integral equation: */ a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+intformal(A^4*exp(-x+x*O(x^n)))); n!*polcoeff(A, n)
CROSSREFS
Cf. A201354, variants: A014307, A136727, A136729.
Sequence in context: A107725 A145160 A129271 * A321031 A102757 A295254
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2008
STATUS
approved