login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295254 Expansion of e.g.f. csch(x)*(1 - sqrt(1 - 4*sinh(x)))/2. 5
1, 1, 4, 31, 352, 5341, 101824, 2341291, 63092992, 1950837241, 68093599744, 2648776394551, 113633946898432, 5330308817264341, 271416230974603264, 14910196369733535811, 879003840976919068672, 55354496206857969062641, 3708594029795800700944384, 263391744037123969891925071 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f.: 1/(1 - sinh(x)/(1 - sinh(x)/(1 - sinh(x)/(1 - sinh(x)/(1 - ...))))), a continued fraction.

a(n) ~ sqrt(2) * 17^(1/4) * n^(n-1) / (exp(n) * (log((1+ sqrt(17))/4))^(n - 1/2)). - Vaclav Kotesovec, Nov 18 2017

MAPLE

a:=series(csch(x)*(1-sqrt(1-4*sinh(x)))/2, x=0, 21): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 27 2019

MATHEMATICA

nmax = 19; CoefficientList[Series[Csch[x] (1 - Sqrt[1 - 4 Sinh[x]])/2, {x, 0, nmax}], x] Range[0, nmax]!

nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[-Sinh[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

CROSSREFS

Cf. A000108, A295237, A295255, A295256, A295257, A295258.

Sequence in context: A136728 A321031 A102757 * A343832 A145561 A201628

Adjacent sequences:  A295251 A295252 A295253 * A295255 A295256 A295257

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 09:37 EST 2021. Contains 349627 sequences. (Running on oeis4.)