This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201628 E.g.f. satisfies: A(x) = 1/(1 - sinh(x*A(x))). 1
 1, 1, 4, 31, 360, 5601, 109568, 2586151, 71555200, 2271961825, 81441188352, 3253620672303, 143361363439616, 6907049546879041, 361245668908466176, 20383791705206338807, 1234336634416972726272, 79843983527411321710401, 5494767253686351671459840, 400863405346004202504321343 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The function 1/(1-sinh(x)) is the e.g.f. of A006154, where A006154(n) is the number of labeled ordered partitions of an n-set into odd parts. LINKS FORMULA E.g.f. A(x) satisfies: A( x*(1 - sinh(x)) ) = 1/(1 - sinh(x)). E.g.f.: (1/x)*Series_Reversion( x*(1 - sinh(x)) ). a(n) = [x^n] 1/(1 - sinh(x))^(n+1) / (n+1). a(n) = A214223(n+1)/(n+1). EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 31*x^3/3! + 360*x^4/4! + 5601*x^5/5! +... The coefficients in initial powers of G(x) = 1/(1 - sinh(x)) begin: G^1: [(1), 1, 2, 7, 32, 181, 1232, 9787, 88832, ..., A006154(n), ...]; G^2: [1,(2), 6, 26, 144, 962, 7536, 67706, ...]; G^3: [1, 3,(12), 63, 408, 3123, 27552, 275103, ...]; G^4: [1, 4, 20,(124), 920, 7924, 77600, 850924, ...]; G^5: [1, 5, 30, 215,(1800), 17225, 185280, 2211515, ...]; G^6: [1, 6, 42, 342, 3192,(33606), 393792, 5080662, ...]; G^7: [1, 7, 56, 511, 5264, 60487, (766976), 10634911, ...]; G^8: [1, 8, 72, 728, 8208, 102248, 1395072,(20689208), ...]; ... where coefficients in parenthesis form initial terms of this sequence: [1/1, 2/2, 12/3, 124/4, 1800/5, 33606/6, 766976/7, 20689208/8, ...]. PROG (PARI) {a(n)=n!*polcoeff(1/x*serreverse(x*(1-sinh(x+x^2*O(x^n)))), n)} (PARI) {a(n)=n!*polcoeff(1/(1 - sinh(x+x*O(x^n)))^(n+1)/(n+1), n)} CROSSREFS Cf. A214223, A201627, A201595, A006154. Sequence in context: A136728 A102757 A145561 * A086677 A016036 A000314 Adjacent sequences:  A201625 A201626 A201627 * A201629 A201630 A201631 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .