login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086677 Number of Steiner topologies on n points. 2
1, 4, 31, 360, 5625, 110880, 2643795, 74035080, 2382538725, 86656878000, 3515761193175, 157425426358200, 7711961781949425, 410298436511964000, 23559634669682986875, 1452240056377167057000, 95649328231839993736125 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

REFERENCES

F. K. Hwang, D. S. Richards and P. Winter, The Steiner Tree Problem, North-Holland, 1992, see p. 14.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..100

FORMULA

Let f(n) = (2*n-4)!/(2^(n-2)*(n-2)!) (A001147) and let F(n, k) = binomial(n, k+2) f(k) (n+k-2)! / (2k)!. Then a(n) = Sum_{k=0..n-2} Sum_{i=0..floor((n-k-2)/2)} binomial(n, i) F(n-i, k+i) (k+i)! / k!.

E.g.f. (for offset 0): 4*(x-3)/(x+1)^4 - (-13+22*x+3*x^2)/((-x^2-4*x+1)^(1/2)*(x+1)^4). - Mark van Hoeij, Oct 31 2011

a(n) ~ 1/8*sqrt(250-110*sqrt(5)) * n^(n-2) * (2+sqrt(5))^n / exp(n). - Vaclav Kotesovec, Mar 10 2014

Equivalently, a(n) ~ 5^(3/4) * phi^(3*n - 5/2) * n^(n-2) / (4 * exp(n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021

MATHEMATICA

a[n_] := Sum[ Binomial[n, i]*Binomial[n-i, i+k+2]*(n+k-2)!*(2i+2k-1)!!*(i+k)! / ((2*(i+k))!*k!), {k, 0, n-2}, {i, 0, (n-k-2)/2}]; Table[a[n], {n, 2, 18}] (* Jean-François Alcover, Sep 03 2012, after formula *)

CROSSREFS

Cf. A001147.

Sequence in context: A343832 A145561 A201628 * A016036 A322626 A000314

Adjacent sequences: A086674 A086675 A086676 * A086678 A086679 A086680

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Jul 28 2003

EXTENSIONS

More terms from Vladeta Jovovic, Jul 29 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 20:01 EST 2022. Contains 358362 sequences. (Running on oeis4.)