|
|
A086676
|
|
Number of n-dimensional 2 X 2 X ... X 2 grid graphs needed to cover an n-dimensional 3 X 3 X ... X 3 torus.
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Patric R. J. Östergård and T. Riihonen, A covering problem for tori, Annals of Combinatorics, 7 (2003), 1-7.
|
|
LINKS
|
Table of n, a(n) for n=1..9.
D. Brink, The Inverse Football Pool Problem, J. Int. Seq. 14 (2011) # 11.8.8.
Emil Kolev, Covering of {F_3}^n with spheres of maximal radius, Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory, September 7-13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 198-203.
E. Kolev and T. Baicheva, About the inverse football pool problem for 9 games, Seventh International Workshop on Optimal Codes and Related Topics, September 6-12, 2013, Albena, Bulgaria pp. 125-133.
Patric R. J. Östergård, Home page
|
|
EXAMPLE
|
Known bounds for n=10 through 13, from Kolev (2014):
10 102-104
11 153-172
12 230-264
13 345-408
|
|
CROSSREFS
|
Sequence in context: A018135 A065435 A301750 * A055804 A267372 A355975
Adjacent sequences: A086673 A086674 A086675 * A086677 A086678 A086679
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Jul 28 2003
|
|
EXTENSIONS
|
I have added two terms (29 and 44). The ranges for the next terms are [66,68] and [99,104]. David Brink, Jun 03 2009
For a(9) = 68 and further bounds see Kolev and Baicheva. - N. J. A. Sloane, Mar 10 2014
|
|
STATUS
|
approved
|
|
|
|