OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp(1 - (1-4*x)^(1/4)) - 1.
a(n) = 6*(2*n-5)*a(n-1) - 3*(16*n^2-96*n+145)*a(n-2) + 2*(4*n-15)*(2*n-7)*(4*n-13)*a(n-3) + a(n-4), n >= 4; a(0) = 1, a(1) = 1, a(2) = 4, a(3) = 31.
a(n) = 1 + (n-1)!*Sum_{m=1..n-1} ( Sum_{k=1..n-m} binomial(n+k-1,n-1) * ( Sum_{j=0..k} binomial(j,n-m-3*k+2*j)*binomial(k,j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k) ) )/(m-1)!. - Vladimir Kruchinin, Oct 18 2011
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^3*d/dx. Cf. A001515, A015735 and A028575. - Peter Bala, Nov 25 2011
a(n) ~ 2^(2*n-3/2)*n^(n-3/4)*exp(1-n)*sqrt(Pi)/Gamma(3/4) * (1 - Gamma(3/4)/(n^(1/4)*sqrt(Pi)) + Gamma(3/4)^2/(4*sqrt(n/2)*Pi)). - Vaclav Kotesovec, Aug 10 2013
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 4^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-4)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/4,n)/k!. (End)
MATHEMATICA
a[n_, m_] /; (n>= m>= 1):= a[n, m]= (4*(n-1)-m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n<m=0; a[_, 0]= 0; a[1, 1] = 1; a[n_]:= Sum[a[n, m], {m, n}]; Table[a[n], {n, 20}] (* Jean-François Alcover, Feb 28 2013 *)
With[{nn=20}, CoefficientList[Series[Exp[1-Surd[1-4x, 4]]-1, {x, 0, nn}], x] Range[0, nn]!]//Rest (* Harvey P. Dale, Apr 20 2016 *)
PROG
(Maxima)
a(n):=((n-1)!*sum((sum(binomial(n+k-1, n-1)*sum(binomial(j, n-m-3*k+2*j)*binomial(k, j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k), j, 0, k), k, 1, n-m))/(m-1)!, m, 1, n-1))+1; /* Vladimir Kruchinin, Oct 18 2011 */
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-4*x)^(1/4)) -1 ))); // G. C. Greubel, Oct 02 2023
(SageMath)
def A016036_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-4*x)^(1/4)) -1 ).egf_to_ogf().list()
a=A016036_list(40); a[1:] # G. C. Greubel, Oct 02 2023
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved