login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322626
G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n * (n - A(x)^n)^n.
1
1, 1, 4, 31, 362, 5567, 104229, 2268586, 55817457, 1524956611, 45699911560, 1489007130546, 52390324106713, 1979726546053502, 79978929224189504, 3440756672193895992, 157085559415640319126, 7587124626671398460006, 386598739562989187413005, 20728976430148069600767400, 1166849728839227202686314988
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * n^(n+1), where c = 0.6410371541108... - Vaclav Kotesovec, Aug 11 2021
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 31*x^3 + 362*x^4 + 5567*x^5 + 104229*x^6 + 2268586*x^7 + 55817457*x^8 + 1524956611*x^9 + 45699911560*x^10 + ...
such that
1 = 1 + x*(1 - A(x)) + x^2*(2 - A(x)^2)^2 + x^3*(3 - A(x)^3)^3 + x^4*(4 - A(x)^4)^4 + x^5*(5 - A(x)^5)^5 + x^6*(6 - A(x)^6)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec(sum(m=0, #A, x^m*(m - Ser(A)^m)^m))[#A+1]); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A086677 A368237 A016036 * A000314 A128709 A138860
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2019
STATUS
approved