login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322627
a(n) = [y^(n+1)] (n + y) * Product_{k=1..2*n} (k + y), for n >= 0.
2
1, 4, 55, 1260, 40593, 1690920, 86550035, 5260335080, 370410456273, 29664913887180, 2663386839535695, 265000164136279572, 28945346029081686865, 3443628513369917505360, 443271719760096505911675, 61385459345641259759898000, 9100387546322497725789848865, 1438068852777042379374392377620, 241308826278118770656171323634855, 42852242077203438281471161279058300
OFFSET
0,2
COMMENTS
A diagonal in triangle A268647: a(n) = A268647(n, n+1) for n >= 0.
LINKS
EXAMPLE
The coefficients of y^k in (n + y) * Product_{j=1..2*n} (j + y), for k=0..2*n+1, yields row n of triangle A268647, which begins:
0, 1;
2, 5, 4, 1;
48, 124, 120, 55, 12, 1;
2160, 6012, 6636, 3829, 1260, 238, 24, 1;
161280, 478656, 582080, 387260, 157080, 40593, 6720, 690, 40, 1;
18144000, 56772000, 74396520, 54801076, 25494150, 7927205, 1690920, 248523, 24750, 1595, 60, 1; ...
this sequence is the diagonal a(n) = A268647(n, n+1) for n >= 0.
PROG
(PARI) /* a(n) = [y^(n+1)] (n + y)*Product_{k=1..2*n} (k + y) */
{A268647(n, k) = polcoeff((n + y)*prod(k=1, 2*n, k + y), k, y)}
{a(n) = A268647(n, n+1)}
for(n=0, 25, print1(a(n), ", "));
CROSSREFS
Cf. A268647.
Sequence in context: A073352 A258793 A195634 * A206384 A271715 A099122
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 26 2019
STATUS
approved