

A099122


Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3}.


9



1, 4, 55, 1540, 73815, 5461512, 581106988, 84431259000, 16104878212995, 3910294246315600, 1178924607035010836, 432472873725488656424, 189789513537655207705620, 98222259182333060014344720
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is the number of possible votes of n referees judging n dancers by a mark between 0 and 3, where the referees cannot be distinguished.
a(n) is the number n element multisets of n element multisets of a 4set.  Andrew Howroyd, Jan 17 2020


LINKS



FORMULA

a(n) = binomial(binomial(n+3, n) + n  1, n).  Andrew Howroyd, Jan 17 2020


PROG

(PARI) a(n)={binomial(binomial(n+3, n) + n  1, n)} \\ Andrew Howroyd, Jan 17 2020


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



