login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099120
Least m such that n = S(k) = S(k+m) for some k, where S is the Kempner function A002034.
2
3, 4, 5, 2, 7, 32, 27, 8, 11, 26, 13, 48, 19, 4096, 17, 74, 19, 447, 27, 121, 23, 4005, 3125, 169, 177147, 2401, 29, 1203, 31, 134217728, 459, 289, 551, 2684163, 37
OFFSET
3,1
COMMENTS
Consider the set Sn of d(n!)-d((n-1)!) positive integers k with S(k) = n, where d is the divisor counting function A000005. For each n, a(n) gives the least difference of integers in the set Sn. For prime n, a(n) = n. For n a power of a prime, a(n) = A046021(n), the least k in Sn. The Tutescu conjecture, which states that the equation S(k) = S(k+1) has no solutions, is equivalent to a(n) > 1 for all n.
REFERENCES
L. Tutescu, "On a Conjecture Concerning the Smarandache Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.
LINKS
Eric Weisstein's World of Mathematics, Smarandache Function
EXAMPLE
a(6) = 2 because S(k) = 6 for k = 9, 16, 18, 36, 45, 48, 72, 80, 90, 144, 180, 240, 360, 720 and the least difference is 2, between 16 and 18.
MATHEMATICA
(*See A002034 for the Kempner function*) a=Table[Kempner[n], {n, 10!}]; Table[lst=Flatten[Position[a, n]]; mn=Infinity; Do[mn=Min[mn, lst[[i+1]]-lst[[i]]], {i, Length[lst]-1}]; mn, {n, 10}]
CROSSREFS
Cf. A099118 (number of times S(k+n) = S(k)), A099119 (greatest k such that S(k) = S(k-n)).
Sequence in context: A262411 A280488 A250072 * A199620 A375829 A016553
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 28 2004
STATUS
approved