login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331436
Array read by antidiagonals: A(n,k) is the number of n element multisets of n element multisets of a k-set.
12
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 21, 20, 1, 0, 1, 5, 55, 220, 70, 1, 0, 1, 6, 120, 1540, 3060, 252, 1, 0, 1, 7, 231, 7770, 73815, 53130, 924, 1, 0, 1, 8, 406, 30856, 1088430, 5461512, 1107568, 3432, 1, 0, 1, 9, 666, 102340, 11009376, 286243776, 581106988, 26978328, 12870, 1, 0
OFFSET
0,8
LINKS
FORMULA
A(n,k) = binomial(binomial(n + k - 1, n) + n - 1, n).
EXAMPLE
Array begins:
==================================================================
n\k | 0 1 2 3 4 5 6
----+-------------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 1 6 21 55 120 231 ...
3 | 0 1 20 220 1540 7770 30856 ...
4 | 0 1 70 3060 73815 1088430 11009376 ...
5 | 0 1 252 53130 5461512 286243776 8809549056 ...
6 | 0 1 924 1107568 581106988 127860662755 13949678575756 ...
...
The A(2,2) = 6 multisets are:
{{1,1}, {1,1}},
{{1,1}, {1,2}},
{{1,1}, {2,2}},
{{1,2}, {1,2}},
{{1,2}, {2,2}},
{{2,2}, {2,2}}.
PROG
(PARI) T(n, k)={binomial(binomial(n + k - 1, n) + n - 1, n)}
{ for(n=0, 7, for(k=0, 7, print1(T(n, k), ", ")); print) }
CROSSREFS
Rows n=0..3 are A000012, A001477, A002817, A140236.
Min diagonal is A331477.
Sequence in context: A294042 A287316 A322280 * A343097 A343095 A210472
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 17 2020
STATUS
approved