login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331434
Column 2 of triangle in A331431.
2
30, -180, 630, -1680, 3780, -7560, 13860, -23760, 38610, -60060, 90090, -131040, 185640, -257040, 348840, -465120, 610470, -790020, 1009470, -1275120, 1593900, -1973400, 2421900, -2948400, 3562650, -4275180, 5097330, -6041280, 7120080, -8347680, 9738960
OFFSET
0,1
COMMENTS
Apart from the signs, essentially the same as A054559. - Georg Fischer, Jan 18 2020
FORMULA
G.f.: 30/(1+x)^6. - Georg Fischer, Jan 18 2020
From G. C. Greubel, Mar 22 2022: (Start)
a(n) = 30*(-1)^n*binomial(n+5, 5).
a(n) = 30*(-1)^n*A000389(n+5).
E.g.f.: (1/4)*(120 - 600*x + 600*x^2 - 200*x^3 + 25*x^4 - x^5)*exp(-x). (End)
MATHEMATICA
CoefficientList[Series[30/(1+x)^6, {x, 0, 30}], x] (* Georg Fischer, Jan 18 2020 *)
PROG
(Magma) [30*(-1)^n*Binomial(n+5, 5): n in [0..50]]; // G. C. Greubel, Mar 22 2022
(Sage) [30*(-1)^n*binomial(n+5, 5) for n in (0..50)] # G. C. Greubel, Mar 22 2022
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jan 17 2020
EXTENSIONS
a(0) changed to 30, and more terms from Georg Fischer, Jan 18 2020
STATUS
approved