login
A331433
Column 1 of triangle in A331431.
3
6, -24, 60, -120, 210, -336, 504, -720, 990, -1320, 1716, -2184, 2730, -3360, 4080, -4896, 5814, -6840, 7980, -9240, 10626, -12144, 13800, -15600, 17550, -19656, 21924, -24360, 26970, -29760, 32736, -35904, 39270, -42840, 46620, -50616, 54834, -59280, 63960, -68880, 74046
OFFSET
0,1
COMMENTS
Apart from the signs, essentially the same as A007531. - Georg Fischer, Jan 18 2020
FORMULA
G.f.: 6/(1+x)^4. - Georg Fischer, Jan 18 2020
a(n) = 6*(-1)^n*A000292(n+1). - R. J. Mathar, Jan 21 2020
E.g.f.: (6 - 18*x + 9*x^2 - x^3)*exp(-x). - G. C. Greubel, Mar 22 2022
MATHEMATICA
CoefficientList[Series[6/(1+x)^4, {x, 0, 40}], x] (* Georg Fischer, Jan 18 2020 *)
PROG
(Magma) [6*(-1)^n*Binomial(n+3, 3): n in [0..50]]; // G. C. Greubel, Mar 22 2022
(Sage) [6*(-1)^n*binomial(n+3, 3) for n in (0..50)] # G. C. Greubel, Mar 22 2022
CROSSREFS
Cf. A098737 (unsigned, 2nd subdiagonal).
Sequence in context: A160944 A160936 A007531 * A329119 A371044 A258345
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jan 17 2020
EXTENSIONS
a(4) changed to 210, and more terms from Georg Fischer, Jan 18 2020
STATUS
approved