login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355073
G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*3^(n*(n-1)/2)) ).
2
1, 1, 4, 55, 2539, 383860, 187659181, 293630900689, 1459799672901004, 22924423319469919651, 1131844225175191511724871, 175015470856131731421651730600, 84480805958219938739735661779357401, 126948830401157131161305967764668449231937
OFFSET
0,3
PROG
(PARI) a(n) = n!*3^(n*(n-1)/2)*polcoef(exp(sum(k=1, n, x^k/(k!*3^(k*(k-1)/2)))+x*O(x^n)), n);
(PARI) T(n, k) = if(k==1, 1, sum(j=1, n-1, 3^(j*(n-j))*binomial(n-1, j)*T(j, k-1)));
a(n) = if(n==0, 1, sum(k=1, n, T(n, k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 18 2022
STATUS
approved