|
|
A355076
|
|
a(n) is the denominator of Sum_{k = 0..n} fusc(k)/fusc(k+1) (where fusc is Stern's diatomic series A002487).
|
|
2
|
|
|
1, 1, 2, 2, 6, 3, 1, 1, 4, 12, 60, 60, 12, 4, 2, 2, 10, 20, 140, 420, 840, 840, 840, 840, 840, 840, 420, 140, 20, 5, 1, 1, 6, 30, 90, 180, 1980, 13860, 13860, 13860, 13860, 27720, 360360, 72072, 72072, 72072, 8008, 8008, 72072, 72072, 72072, 360360, 27720
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: a(n) = 1 for n of the form 2*4^k - 1 or 2*4^k - 2 for some k >= 0.
|
|
EXAMPLE
|
For n = 4:
- the first 5 terms of A002487 are: 0, 1, 1, 2, 1, 3,
- 0/1 + 1/1 + 1/2 + 2/1 + 1/3 = 23/6,
- so a(4) = 6.
|
|
PROG
|
(PARI) fusc(n)=local(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b \\ after Charles R Greathouse IV in A002487
{ s = 0; for (n=0, 52, print1 (denominator(s+=fusc(n)/fusc(n+1))", ")) }
(Python)
from fractions import Fraction
from functools import reduce
def A355076(n): return sum(Fraction(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(k)[-1:1:-1], (1, 0))[1], reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(k+1)[-1:1:-1], (1, 0))[1]) for k in range(n+1)).denominator # Chai Wah Wu, Jun 19 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|