login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355076
a(n) is the denominator of Sum_{k = 0..n} fusc(k)/fusc(k+1) (where fusc is Stern's diatomic series A002487).
2
1, 1, 2, 2, 6, 3, 1, 1, 4, 12, 60, 60, 12, 4, 2, 2, 10, 20, 140, 420, 840, 840, 840, 840, 840, 840, 420, 140, 20, 5, 1, 1, 6, 30, 90, 180, 1980, 13860, 13860, 13860, 13860, 27720, 360360, 72072, 72072, 72072, 8008, 8008, 72072, 72072, 72072, 360360, 27720
OFFSET
0,3
FORMULA
Conjecture: a(n) = 1 for n of the form 2*4^k - 1 or 2*4^k - 2 for some k >= 0.
EXAMPLE
For n = 4:
- the first 5 terms of A002487 are: 0, 1, 1, 2, 1, 3,
- 0/1 + 1/1 + 1/2 + 2/1 + 1/3 = 23/6,
- so a(4) = 6.
PROG
(PARI) fusc(n)=local(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b \\ after Charles R Greathouse IV in A002487
{ s = 0; for (n=0, 52, print1 (denominator(s+=fusc(n)/fusc(n+1))", ")) }
(Python)
from fractions import Fraction
from functools import reduce
def A355076(n): return sum(Fraction(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(k)[-1:1:-1], (1, 0))[1], reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(k+1)[-1:1:-1], (1, 0))[1]) for k in range(n+1)).denominator # Chai Wah Wu, Jun 19 2022
CROSSREFS
Cf. A002487, A174868, A355075 (corresponding numerators).
Sequence in context: A329380 A348146 A377346 * A344007 A130478 A308140
KEYWORD
nonn,look,frac
AUTHOR
Rémy Sigrist, Jun 18 2022
STATUS
approved