The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355070 G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*3^(n*(n-1)/2)) ). 2
 0, 1, -2, 28, -1808, 469072, -456745472, 1601325615808, -19650153075181568, 826737899840505194752, -117393483573257494026125312, 55564698792825562646890851908608, -86789641569440259960965030826164092928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..12. FORMULA a(0) = 0; a(n) = 1 - Sum_{k=1..n-1} 3^(k*(n-k)) * binomial(n-1,k) * a(n-k). PROG (PARI) a(n) = n!*3^(n*(n-1)/2)*polcoef(log(sum(k=0, n, x^k/(k!*3^(k*(k-1)/2)))+x*O(x^n)), n); (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=0; for(i=1, n, v[i+1]=1-sum(j=1, i-1, 3^(j*(i-j))*binomial(i-1, j)*v[i-j+1])); v; CROSSREFS Cf. A134531, A355071. Cf. A188457, A355073. Sequence in context: A238817 A202942 A356518 * A326366 A177400 A230700 Adjacent sequences: A355067 A355068 A355069 * A355071 A355072 A355073 KEYWORD sign AUTHOR Seiichi Manyama, Jun 18 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 04:34 EDT 2023. Contains 363081 sequences. (Running on oeis4.)