login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355071 G.f.: Sum_{n>=0} a(n)*x^n/(n!*4^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*4^(n*(n-1)/2)) ). 2
0, 1, -3, 81, -13311, 11688705, -51334027263, 1082183686000641, -106464672910860746751, 47880898685034024043741185, -96901748928702482338511172665343, 871602415363671863767026450797790494721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..11.

FORMULA

a(0) = 0; a(n) = 1 - Sum_{k=1..n-1} 4^(k*(n-k)) * binomial(n-1,k) * a(n-k).

PROG

(PARI) a(n) = n!*4^(n*(n-1)/2)*polcoef(log(sum(k=0, n, x^k/(k!*4^(k*(k-1)/2)))+x*O(x^n)), n);

(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=0; for(i=1, n, v[i+1]=1-sum(j=1, i-1, 4^(j*(i-j))*binomial(i-1, j)*v[i-j+1])); v;

CROSSREFS

Cf. A134531, A355070.

Cf. A137435, A355074.

Sequence in context: A207983 A207195 A207215 * A207544 A207311 A206693

Adjacent sequences: A355068 A355069 A355070 * A355072 A355073 A355074

KEYWORD

sign

AUTHOR

Seiichi Manyama, Jun 18 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 06:57 EDT 2023. Contains 361673 sequences. (Running on oeis4.)