OFFSET
0,4
COMMENTS
A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.
FORMULA
a(n) = A326375(n) - 1.
EXAMPLE
The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection:
{} {} {} {} {}
{{12}{13}{23}} {{12}{13}{23}}
{{12}{14}{24}}
{{13}{14}{34}}
{{23}{24}{34}}
{{12}{13}{234}}
{{12}{14}{234}}
{{12}{23}{134}}
{{12}{24}{134}}
{{13}{14}{234}}
{{13}{23}{124}}
{{13}{34}{124}}
{{14}{24}{123}}
{{14}{34}{123}}
{{23}{24}{134}}
{{23}{34}{124}}
{{24}{34}{123}}
{{12}{134}{234}}
{{13}{124}{234}}
{{14}{123}{234}}
{{23}{124}{134}}
{{24}{123}{134}}
{{34}{123}{124}}
{{12}{13}{14}{234}}
{{12}{23}{24}{134}}
{{13}{23}{34}{124}}
{{14}{24}{34}{123}}
{{123}{124}{134}{234}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&], #=={}||Intersection@@#=={}&]], {n, 0, 4}]
CROSSREFS
The case with empty edges allowed is A326375.
Intersecting antichains of nonempty sets are A001206.
Intersecting set systems with empty intersection are A326373.
The inverse binomial transform is the covering case A326365.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 01 2019
EXTENSIONS
a(7)-a(8) from Andrew Howroyd, Aug 14 2019
STATUS
approved