OFFSET
1,3
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Richard J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 [math.CO], 2019.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = (1/16)*(n-2)*(9*n^5 - 9*n^4 - 81*n^3 + 81*n^2 + 160*n - 192) for n >= 2 (proved by Greg Dresden and E. Sijaric).
From Colin Barker, Jul 02 2019: (Start)
G.f.: x^3*(18 + 308*x + 154*x^2 - 87*x^3 + 10*x^4 + 2*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
EXAMPLE
We can represent a unit triangle this way:
o
/ \
o - o
and a unit "lozenge" or "diamond" has these three orientations:
o
/ \ o - o o - o
o o and / / and also \ \
\ / o - o o - o
o
and for n=3, here is one of the 18 different tiling of the triangle of side length 3 with exactly three lozenges:
o
/ \
o o
/ \ / \
o - o o
/ / \ / \
o - o - o - o
MATHEMATICA
Rest@ CoefficientList[Series[x^3*(18 + 308 x + 154 x^2 - 87 x^3 + 10 x^4 + 2 x^5)/(1 - x)^7, {x, 0, 30}], x] (* Michael De Vlieger, Jul 07 2019 *)
PROG
(PARI) concat([0, 0], Vec(x^3*(18 + 308*x + 154*x^2 - 87*x^3 + 10*x^4 + 2*x^5) / (1 - x)^7 + O(x^40))) \\ Colin Barker, Jul 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Jul 01 2019
STATUS
approved