The OEIS is supported by the many generous donors to the OEIS Foundation.

A273464
The number of tilings of an equilateral triangle of side length n with k lozenges and n^2 - 2*k unit triangles. Triangle T(n, k) with n >= 1 and 0 <= k <= n*(n + 1)/2, read by rows.
10
1, 1, 3, 1, 9, 24, 18, 1, 18, 126, 434, 762, 630, 187, 1, 30, 387, 2814, 12699, 36894, 69242, 81936, 57672, 21432, 3135, 1, 45, 915, 11127, 90270, 515970, 2139120, 6523428, 14683401, 24256853, 28975770, 24383838, 13860321, 4966929, 989970, 81462, 1, 63
OFFSET
1,3
J. A. De Loera, J. Rambau, F. Santos, Further topics, in: Triangulations, vol 25 of Algor. Computat. Math. (2010), 433-511.
R. J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 [math.CO], 2019.
Francisco Santos, The Cayley trick and triangulations of products of simplices, arXiv:math/0312069 [math.CO], 2004.
Francisco Santos, The Cayley trick and triangulations of products of simplices, Cont. Math. 374 (2005), 151-177.
Wikipedia, Lozenge.
FORMULA
T(n,2) = 3*(n-1)*(n-2)*(3*n^2+3*n-4)/8 . - R. J. Mathar, May 24 2016
T(n,3) = (n-2)*(9*n^5-9*n^4-81*n^3+81*n^2+160*n-192)/16. - Greg Dresden, Jul 03 2019
Conjecture: T(n,4) = 3*(n-2)*(n-3)*(9*n^6+9*n^5-135*n^4-81*n^3+670*n^2+104*n-1216)/128. - Greg Dresden, Jul 03 2019
Conjecture: T(n,5) = 3*(n-3)*(n+3)* (27*n^8 -135*n^7 -387*n^6 +2835*n^5 -168*n^4 -18732*n^3 +19568*n^2 +36992*n -56320)/1280. - R. J. Mathar, Jul 07 2019
From Petros Hadjicostas, Sep 13 2019: (Start)
Conjecture for rightmost terms: A122722(n) = n! * T(n, n*(n+1)/2) for n >= 1.
Conjectures for column k >= 0: Sum_{0 <= s <= 2*k + 1} (-1)^s * binomial(2*k+1, s) * T(n-s, k) = 0 for n >= 2*k+2.
Sum_{0 <= s <= 2*k} (-1)^s * binomial(2*k, s) * T(n-s, k) = A011781(k) for n >= 2*k+1. (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 0) begins as follows:
1;
1, 3;
1, 9, 24, 18;
1, 18, 126, 434, 762, 630, 187;
1, 30, 387, 2814, 12699, 36894, 69242, 81936, 57672, 21432, 3135;
...
CROSSREFS
Cf. A045943 (column k=1), A011555, A011556, A011781, A122722, A326367 (k=2), A326368 (k=3), A326369 (k=4), A000124 (row lengths).
Sequence in context: A160568 A157403 A225118 * A105951 A038202 A128415
KEYWORD
tabf,nonn
AUTHOR
R. J. Mathar, May 23 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 02:18 EDT 2024. Contains 376016 sequences. (Running on oeis4.)