OFFSET
1,3
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..575
J. A. De Loera, J. Rambau, F. Santos, Further topics, in: Triangulations, vol 25 of Algor. Computat. Math. (2010), 433-511.
R. J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 [math.CO], 2019.
Francisco Santos, The Cayley trick and triangulations of products of simplices, arXiv:math/0312069 [math.CO], 2004.
Francisco Santos, The Cayley trick and triangulations of products of simplices, Cont. Math. 374 (2005), 151-177.
Wikipedia, Lozenge.
FORMULA
T(n,2) = 3*(n-1)*(n-2)*(3*n^2+3*n-4)/8 . - R. J. Mathar, May 24 2016
T(n,3) = (n-2)*(9*n^5-9*n^4-81*n^3+81*n^2+160*n-192)/16. - Greg Dresden, Jul 03 2019
Conjecture: T(n,4) = 3*(n-2)*(n-3)*(9*n^6+9*n^5-135*n^4-81*n^3+670*n^2+104*n-1216)/128. - Greg Dresden, Jul 03 2019
Conjecture: T(n,5) = 3*(n-3)*(n+3)* (27*n^8 -135*n^7 -387*n^6 +2835*n^5 -168*n^4 -18732*n^3 +19568*n^2 +36992*n -56320)/1280. - R. J. Mathar, Jul 07 2019
From Petros Hadjicostas, Sep 13 2019: (Start)
Conjecture for rightmost terms: A122722(n) = n! * T(n, n*(n+1)/2) for n >= 1.
Conjectures for column k >= 0: Sum_{0 <= s <= 2*k + 1} (-1)^s * binomial(2*k+1, s) * T(n-s, k) = 0 for n >= 2*k+2.
Sum_{0 <= s <= 2*k} (-1)^s * binomial(2*k, s) * T(n-s, k) = A011781(k) for n >= 2*k+1. (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 0) begins as follows:
1;
1, 3;
1, 9, 24, 18;
1, 18, 126, 434, 762, 630, 187;
1, 30, 387, 2814, 12699, 36894, 69242, 81936, 57672, 21432, 3135;
...
CROSSREFS
KEYWORD
tabf,nonn
AUTHOR
R. J. Mathar, May 23 2016
STATUS
approved