The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105951 a(2*n) = -(2^(2*n+1) + 1), a(2*n+1) = (2^(n+1) - (-1)^n)^2. 2
 -3, 1, -9, 25, -33, 49, -129, 289, -513, 961, -2049, 4225, -8193, 16129, -32769, 66049, -131073, 261121, -524289, 1050625, -2097153, 4190209, -8388609, 16785409, -33554433, 67092481, -134217729, 268468225, -536870913, 1073676289, -2147483649 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This sequence appears to have the property that for m > n: if s divides a(n) and a(m) then s also divides a(2m-n). For example, 11 divides -33 = a(4), 11 divides -32769 = a(14) and 11 divides a(2*14-4) = a(24) = -33554433. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Robert Munafo, Sequences Related to Floretions FORMULA G.f.: -(3 +8*x +18*x^2 +16*x^3)/((2*x+1)*(x+1)*(2*x^2+1)). MATHEMATICA CoefficientList[Series[-(3 + 8*x + 18*x^2 + 16*x^3)/((2*x + 1)*(x + 1)*(2*x^2 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Jan 01 2018 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 4tesseq[ - .75'i - .75i' - .75'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' - .75e] (PARI) x='x+O('x^30); Vec(-(3 + 8*x + 18*x^2 + 16*x^3)/((2*x + 1)*(x + 1)*(2*x^2 + 1))) \\ G. C. Greubel, Jan 01 2018 CROSSREFS Sequence in context: A157403 A225118 A273464 * A038202 A128415 A227795 Adjacent sequences:  A105948 A105949 A105950 * A105952 A105953 A105954 KEYWORD easy,sign AUTHOR Creighton Dement, Apr 27 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 12:54 EST 2021. Contains 340187 sequences. (Running on oeis4.)