login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105952
(2n)-th Legendre polynomial P_{2n}(x), evaluated at x = 2n-1. Here the Legendre polynomials are normalized so that P_{n}(1) = 1.
1
1, 321, 213445, 278905249, 610897146201, 2023268287369681, 9449986579423765453, 59214605458489033180545, 479530506556330198532943409, 4875296429727384973283863144801
OFFSET
1,2
LINKS
FORMULA
a(n) ~ n^(2*n)*2^(4*n)/(exp(1)*sqrt(2*Pi*n)). - Vaclav Kotesovec, Jul 31 2013
EXAMPLE
P_{4}(x) = 35/8*x^4 - 15/4*x^2 + 3/8; evaluating at x=3 gives 321.
MAPLE
with(orthopoly, P); seq(P(2*n, 2*n-1), n=1..12);
MATHEMATICA
Table[LegendreP[2*n, 2*n-1], {n, 1, 20}] (* Vaclav Kotesovec, Jul 31 2013 *)
PROG
(PARI) a(n)=pollegendre(2*n, 2*n-1) \\ Charles R Greathouse IV, Mar 19 2017
CROSSREFS
Sequence in context: A074350 A144124 A090101 * A062205 A054034 A357118
KEYWORD
easy,nonn
AUTHOR
Isabel C. Lugo (izzycat(AT)gmail.com), Apr 27 2005
STATUS
approved