login
A105952
(2n)-th Legendre polynomial P_{2n}(x), evaluated at x = 2n-1. Here the Legendre polynomials are normalized so that P_{n}(1) = 1.
1
1, 321, 213445, 278905249, 610897146201, 2023268287369681, 9449986579423765453, 59214605458489033180545, 479530506556330198532943409, 4875296429727384973283863144801
OFFSET
1,2
LINKS
FORMULA
a(n) ~ n^(2*n)*2^(4*n)/(exp(1)*sqrt(2*Pi*n)). - Vaclav Kotesovec, Jul 31 2013
EXAMPLE
P_{4}(x) = 35/8*x^4 - 15/4*x^2 + 3/8; evaluating at x=3 gives 321.
MAPLE
with(orthopoly, P); seq(P(2*n, 2*n-1), n=1..12);
MATHEMATICA
Table[LegendreP[2*n, 2*n-1], {n, 1, 20}] (* Vaclav Kotesovec, Jul 31 2013 *)
PROG
(PARI) a(n)=pollegendre(2*n, 2*n-1) \\ Charles R Greathouse IV, Mar 19 2017
CROSSREFS
Sequence in context: A074350 A144124 A090101 * A062205 A054034 A357118
KEYWORD
easy,nonn
AUTHOR
Isabel C. Lugo (izzycat(AT)gmail.com), Apr 27 2005
STATUS
approved