login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144124 P_4(2n+1), the Legendre polynomial of order 4 at 2n+1. 2
1, 321, 2641, 10321, 28401, 63601, 124321, 220641, 364321, 568801, 849201, 1222321, 1706641, 2322321, 3091201, 4036801, 5184321, 6560641, 8194321, 10115601, 12356401, 14950321, 17932641, 21340321, 25212001, 29588001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Legendre polynomial LP_4(x) = (35*x^4 - 30*x^2 + 3)/8. - Klaus Brockhaus, Nov 21 2009

LINKS

Table of n, a(n) for n=0..25.

Eric W. Weisstein, Legendre Polynomial.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

From Klaus Brockhaus, Nov 21 2009: (Start)

a(n) = 70*n^4 + 140*n^3 + 90*n^2 + 20*n + 1.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 1680 for n > 3; a(0)=1, a(1)=321, a(2)=2641, a(3)=10321.

G.f.: (1 + 316*x + 1046*x^2 + 316*x^3 + x^4)/(1-x)^5. (End)

MATHEMATICA

Table[LegendreP[4, 2n+1], {n, 0, 50}] (* N. J. A. Sloane, Nov 17 2009 *)

PROG

(MAGMA) P<x> := PolynomialRing(IntegerRing()); LP_4<x>:=LegendrePolynomial(4); [ Evaluate(LP_4, 2*n+1): n in [0..25] ]; // Klaus Brockhaus, Nov 21 2009

(PARI) a(n)=pollegendre(4, n+n+1) \\ Charles R Greathouse IV, Oct 25 2011

CROSSREFS

Cf. A140870.

Sequence in context: A228226 A004927 A074350 * A090101 A105952 A062205

Adjacent sequences:  A144121 A144122 A144123 * A144125 A144126 A144127

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Sep 11 2008

EXTENSIONS

Definition corrected by N. J. A. Sloane, Nov 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 10:46 EDT 2021. Contains 343650 sequences. (Running on oeis4.)