OFFSET
0,1
LINKS
Eric W. Weisstein, Legendre Polynomial.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
Legendre polynomial LP_4(x) = (35*x^4-30*x^2+3)/8. - Klaus Brockhaus, Nov 21 2009
From Klaus Brockhaus, Nov 21 2009: (Start)
a(n) = 560*n^4-120*n^2+3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+13440 for n > 3; a(0)=3, a(1)=443, a(2)=8483, a(3)=44283.
G.f.: (3+428*x+6298*x^2+6268*x^3+443*x^4)/(1-x)^5. (End)
MAPLE
MATHEMATICA
Table[8 LegendreP[4, 2n], {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {3, 443, 8483, 44283, 141443}, 30] (* Vincenzo Librandi, Oct 04 2015 *)
PROG
(Magma)
P<x> := PolynomialRing(IntegerRing());
LP4:=LegendrePolynomial(4);
[ Evaluate(8*LP4, 2*n): n in [0..26] ]; // Klaus Brockhaus, Nov 18 2009
(PARI) {for(n=0, 26, print1(subst(8*pollegendre(4), x, 2*n), ", "))} \\ Klaus Brockhaus, Nov 21 2009
(Magma) [560*n^4 - 120*n^2 + 3: n in [0..30]]; // Vincenzo Librandi, Oct 04 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2009
STATUS
approved