The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140870 8*P_4(2n), 8 times the Legendre Polynomial of order 4 at 2n. 2
 3, 443, 8483, 44283, 141443, 347003, 721443, 1338683, 2286083, 3664443, 5588003, 8184443, 11594883, 15973883, 21489443, 28323003, 36669443, 46737083, 58747683, 72936443, 89552003, 108856443, 131125283, 156647483, 185725443, 218675003, 255825443 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Eric W. Weisstein, Legendre Polynomial. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA Legendre polynomial LP_4(x) = (35*x^4-30*x^2+3)/8. - Klaus Brockhaus, Nov 21 2009 From Klaus Brockhaus, Nov 21 2009: (Start) a(n) = 560*n^4-120*n^2+3. a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+13440 for n > 3; a(0)=3, a(1)=443, a(2)=8483, a(3)=44283. G.f.: (3+428*x+6298*x^2+6268*x^3+443*x^4)/(1-x)^5. (End) MAPLE A140870 := proc(n)         8*orthopoly[P](4, 2*n) ; end proc: # R. J. Mathar, Oct 24 2011 MATHEMATICA Table[8 LegendreP[4, 2n], {n, 0, 50}] LinearRecurrence[{5, -10, 10, -5, 1}, {3, 443, 8483, 44283, 141443}, 30] (* Vincenzo Librandi, Oct 04 2015 *) PROG (MAGMA) P := PolynomialRing(IntegerRing()); LP4:=LegendrePolynomial(4); [ Evaluate(8*LP4, 2*n): n in [0..26] ]; // Klaus Brockhaus, Nov 18 2009 (PARI) {for(n=0, 26, print1(subst(8*pollegendre(4), x, 2*n), ", "))} \\ Klaus Brockhaus, Nov 21 2009 (MAGMA) [560*n^4 - 120*n^2 + 3: n in [0..30]]; // Vincenzo Librandi, Oct 04 2015 CROSSREFS Cf. A144124. Sequence in context: A326373 A092052 A139999 * A157601 A094454 A261004 Adjacent sequences:  A140867 A140868 A140869 * A140871 A140872 A140873 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 02:55 EDT 2021. Contains 343685 sequences. (Running on oeis4.)