login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140870
8*P_4(2n), 8 times the Legendre Polynomial of order 4 at 2n.
2
3, 443, 8483, 44283, 141443, 347003, 721443, 1338683, 2286083, 3664443, 5588003, 8184443, 11594883, 15973883, 21489443, 28323003, 36669443, 46737083, 58747683, 72936443, 89552003, 108856443, 131125283, 156647483, 185725443, 218675003, 255825443
OFFSET
0,1
FORMULA
Legendre polynomial LP_4(x) = (35*x^4-30*x^2+3)/8. - Klaus Brockhaus, Nov 21 2009
From Klaus Brockhaus, Nov 21 2009: (Start)
a(n) = 560*n^4-120*n^2+3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+13440 for n > 3; a(0)=3, a(1)=443, a(2)=8483, a(3)=44283.
G.f.: (3+428*x+6298*x^2+6268*x^3+443*x^4)/(1-x)^5. (End)
MAPLE
A140870 := proc(n)
8*orthopoly[P](4, 2*n) ;
end proc: # R. J. Mathar, Oct 24 2011
MATHEMATICA
Table[8 LegendreP[4, 2n], {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {3, 443, 8483, 44283, 141443}, 30] (* Vincenzo Librandi, Oct 04 2015 *)
PROG
(Magma)
P<x> := PolynomialRing(IntegerRing());
LP4:=LegendrePolynomial(4);
[ Evaluate(8*LP4, 2*n): n in [0..26] ]; // Klaus Brockhaus, Nov 18 2009
(PARI) {for(n=0, 26, print1(subst(8*pollegendre(4), x, 2*n), ", "))} \\ Klaus Brockhaus, Nov 21 2009
(Magma) [560*n^4 - 120*n^2 + 3: n in [0..30]]; // Vincenzo Librandi, Oct 04 2015
CROSSREFS
Cf. A144124.
Sequence in context: A326373 A092052 A139999 * A157601 A094454 A261004
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2009
STATUS
approved