login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168554
G.f.: A(x) = Sum_{n>=0} 2^(n^2)*A000108(n)*(1-2^n*x)^n*x^n where A000108 is the Catalan numbers.
1
1, 2, 28, 2304, 856576, 1351057408, 8846893121536, 238036693238677504, 26163011929227894194176, 11701653843176682031379644416, 21237338088859808279441141143699456
OFFSET
0,2
COMMENTS
Compare the g.f. to: Sum_{n>=0} A000108(n)*(1-x)^n*x^n = 1/(1-x).
LINKS
FORMULA
a(n) = [x^n] 2/(1 + sqrt(1 - 4*2^n*(x-x^2))).
a(n) = Sum_{k=0..[n/2]} (-1)^k*2^(n(n-k))*C(n-k,k)*A000108(n-k).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 28*x^2 + 2304*x^3 + 856576*x^4 +...
MAPLE
S:= add(2^(n^2)*binomial(2*n, n)/(n+1)*(1-2^n*x)^n*x^n, n=0..30):
seq(coeff(S, x, n), n=0..30); # Robert Israel, Nov 13 2016
MATHEMATICA
Table[Sum[(-1)^k*2^(n(n-k))*Binomial[n-k, k]*Binomial[2*(n-k), (n-k)]/(n-k+1), {k, 0, Floor[n/2]}], {n, 0, 20}] (* G. C. Greubel, Nov 13 2016 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, 2^(m^2)*binomial(2*m, m)/(m+1)*x^m*(1-2^m*x)^m)+x*O(x^n), n)}
(PARI) {a(n)=polcoeff(2/(1+sqrt(1-4*2^n*(x-x^2) +x*O(x^n))), n)}
(PARI) {a(n)=sum(k=0, n\2, (-1)^k*2^(n*(n-k))*binomial(n-k, k)*binomial(2*n-2*k, n-k)/(n-k+1))}
CROSSREFS
Cf. A000108.
Sequence in context: A326366 A177400 A230700 * A152792 A085602 A058502
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 29 2009
STATUS
approved