login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168557
Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (-1)^n*((x + 1)^n - x^n + 1), 0 <= k <= max(0, n - 1).
1
1, -2, 2, 2, -2, -3, -3, 2, 4, 6, 4, -2, -5, -10, -10, -5, 2, 6, 15, 20, 15, 6, -2, -7, -21, -35, -35, -21, -7, 2, 8, 28, 56, 70, 56, 28, 8, -2, -9, -36, -84, -126, -126, -84, -36, -9, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, -2, -11, -55, -165, -330, -462, -462, -330
OFFSET
0,2
COMMENTS
A variant of Pascal's triangle, the first column replaced by 2 (if n > 0), the last column dropped, and then odd rows multiplied by (-1)^n.
Absolute value row sums are A000079.
FORMULA
From Franck Maminirina Ramaharo, Nov 22 2018: (Start)
T(n,k) = (-1)^n*binomial(n, k) + (-1)^n*delta(0, k) - delta(0, n), where delta is Kronecker's delta-symbol.
G.f.: (1 + 2*x*y - (1 - x - x^2)*y^2)/((1 + y)*(1 + x*y)*(1 + y + x*y)).
E.g.f.: (1 - exp(y) + exp(x*y))*exp(-(1 + x)*y). (End)
EXAMPLE
Triangle begins:
1;
-2;
2, 2;
-2, -3, -3;
2, 4, 6, 4;
-2, -5, -10, -10, -5;
2, 6, 15, 20, 15, 6;
-2, -7, -21, -35, -35, -21, -7;
2, 8, 28, 56, 70, 56, 28, 8;
-2, -9, -36, -84, -126, -126, -84, -36, -9;
2, 10, 45, 120, 210, 252, 210, 120, 45, 10;
-2, -11, -55, -165, -330, -462, -462, -330, -165, -55, -11;
2, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12;
...
MATHEMATICA
Table[CoefficientList[(-1)^n*(x + 1)^n - (-1)^n*(x^n - 1), x], {n, 0, 12}]
PROG
(Maxima) create_list((-1)^n*binomial(n, k) + (-1)^n*kron_delta(0, k) - kron_delta(0, n), n, 0, 12, k, 0, max(0, n - 1)); /* Franck Maminirina Ramaharo, Nov 21 2018 */
CROSSREFS
KEYWORD
sign,tabf,easy
AUTHOR
Roger L. Bagula, Nov 29 2009
STATUS
approved