OFFSET
1,3
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 1. Also, any integer n > 1 can be written as x + y (x, y > 0) with x + F(y) prime.
(ii) Each positive integer n not among 1, 7, 55 can be written as x + y (x, y > 0) with x*(x+1)/2 + F(y) prime. Also, any positive integer n not among 1, 10, 13, 20, 255 can be written as x + y (x, y > 0) with x^2 + F(y) prime.
We also have similar conjectures involving some second-order recurrences other than the Fibonacci sequence.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
EXAMPLE
a(19) = 1 since 19 = 17 + 2 with 17*18 + F(2) = 307 prime.
a(30) = 1 since 30 = 8 + 22 with 8*9 + F(22) = 17783 prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[x(x+1)+Fibonacci[n-x]], 1, 0], {x, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 10 2013
STATUS
approved