login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231554 G.f. satisfies: A(x) = (1 + 2*x*A(x))^2 * (2 + A(x)) / 3. 9
1, 6, 54, 588, 7116, 92016, 1244928, 17405520, 249486480, 3646632288, 54146466528, 814458834432, 12384344444160, 190052162396160, 2939737725858816, 45785756862006528, 717416350525430016, 11301288605493981696, 178873923678771712512, 2843246259040708414464 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..800

Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.

FORMULA

G.f. A(x) satisfies:

(1) A(x) = exp( x*(2*A(x) + A(x)^2) + Integral(2*A(x) + A(x)^2 dx) ).

(2) A(x) = (1/x)*Series_Reversion( x*(1-2*x-2*x^2)/(1+2*x)^2 ).

(3) A(x) = 1 + 2*x*A(x)*(2 + A(x))*(1 + x*A(x)).

(4) A(x) = 1 + Sum_{n>=2} (-2)^(n-2) * 3*n * x^(n-1) * A(x)^n.

Recurrence: n*(n+1)*(5*n-7)*a(n) = n*(90*n^2 - 171*n + 67)*a(n-1) - (75*n^3 - 255*n^2 + 254*n - 72)*a(n-2) + 8*(n-3)*(2*n-3)*(5*n-2)*a(n-3). - Vaclav Kotesovec, Dec 29 2013

a(n) ~ 2^(5*n-4/3) / (n^(3/2) * sqrt(Pi*s) * r^n), where r = 1.862506043468007499... is the root of the equation -2048 + 1152*r - 30*r^2 + r^3 = 0 and s = 0.0684490196162931593... is the root of the equation -125 + 386700*s^3 + 9529446*s^6 + 134217728*s^9 = 0. - Vaclav Kotesovec, Dec 29 2013

EXAMPLE

G.f.: A(x) = 1 + 6*x + 54*x^2 + 588*x^3 + 7116*x^4 + 92016*x^5 +...

Related expansions.

(1 + 2*x*A(x))^2 = 1 + 4*x + 28*x^2 + 264*x^3 + 2928*x^4 + 35760*x^5 +...

(2 + A(x))/3 = 1 + 2*x + 18*x^2 + 196*x^3 + 2372*x^4 + 30672*x^5 +...

2*A(x) + A(x)^2 = 3 + 24*x + 252*x^2 + 3000*x^3 + 38436*x^4 + 516960*x^5 +...

log(A(x)) = 6*x + 72*x^2/2 + 1008*x^3/3 + 15000*x^4/4 + 230616*x^5/5 +...

MATHEMATICA

CoefficientList[1/x*InverseSeries[Series[x*(1-2*x-2*x^2)/(1+2*x)^2, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Dec 29 2013 *)

PROG

(PARI) {a(n)=polcoeff((serreverse(x*(1-2*x-2*x^2)/(1+2*x)^2 +x^2*O(x^n))/x), n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=local(A=1); for(i=1, n, A=exp(x*(2*A+A^2)+intformal(2*A+A^2 +x*O(x^n)))); polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=local(A=1); for(i=1, n, A=1+2*x*A*(2+A)*(1+x*A) +x*O(x^n)); polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A228966, A231552, A231553, A231556, A231615, A231616, A231618.

Sequence in context: A241843 A201352 A186375 * A069726 A269477 A305602

Adjacent sequences:  A231551 A231552 A231553 * A231555 A231556 A231557

KEYWORD

nonn,changed

AUTHOR

Paul D. Hanna, Nov 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 19:44 EDT 2019. Contains 328128 sequences. (Running on oeis4.)