login
A228428
Number of ways to write n = x + y (x, y > 0) with p(99, x) + p(100, y) prime, where p(m, k) denotes the m-gonal number (m-2)*k*(k-1)/2 + k.
6
0, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 2, 4, 1, 3, 5, 4, 3, 5, 1, 4, 3, 2, 1, 7, 5, 1, 4, 4, 4, 4, 5, 2, 5, 4, 2, 6, 1, 4, 9, 6, 4, 6, 6, 5, 6, 5, 4, 6, 5, 11, 9, 6, 5, 10, 4, 3, 9, 5, 3, 11, 7, 7, 10, 5, 5, 10, 5, 5, 5, 4, 7, 6, 6, 5, 13, 7, 3, 12, 5, 5, 12, 6, 7, 8, 6, 4, 9, 7, 8, 9, 10, 9, 9, 8, 15, 17, 9, 9, 10
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
See also A228425 for other similar conjectures.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, preprint, arXiv:0905.0635.
EXAMPLE
a(8) = 1 since 8 = 3 + 5 with p(99, 3) + p (100, 5) = 1279 prime.
a(38) = 1 since 38 = 6 + 32 with p(99, 6) + p(100, 32) = 50101 prime.
MATHEMATICA
p[m_, x_]:=(m-2)x(x-1)/2+x
a[n_]:=Sum[If[PrimeQ[p[99, x]+p[100, n-x]], 1, 0], {x, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
Sequence in context: A341052 A201160 A302538 * A344911 A321915 A321748
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 10 2013
STATUS
approved