login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321915
Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
0
1, 2, -1, -1, 1, 3, -3, 1, -3, 5, -2, 1, -2, 1, 4, -2, -4, 4, -1, -2, 3, 2, -4, 1, -4, 2, 7, -7, 2, 4, -4, -7, 10, -3, -1, 1, 2, -3, 1, 5, -5, -5, 5, 5, -5, 1, -5, 9, 5, -7, -9, 9, -2, -5, 5, 11, -11, -8, 10, -2, 5, -7, -11, 14, 10, -14, 3, 5, -9, -8, 10, 12
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of e(v) in f(u), where f is forgotten symmetric functions and e is elementary symmetric functions.
EXAMPLE
Tetrangle begins:
(1): 1
.
(2): 2 -1
(11): -1 1
.
(3): 3 -3 1
(21): -3 5 -2
(111): 1 -2 1
.
(4): 4 -2 -4 4 -1
(22): -2 3 2 -4 1
(31): -4 2 7 -7 2
(211): 4 -4 -7 10 -3
(1111): -1 1 2 -3 1
.
(5): 5 -5 -5 5 5 -5 1
(41): -5 9 5 -7 -9 9 -2
(32): -5 5 11 11 -8 10 -2
(221): 5 -7 11 14 10 14 3
(311): 5 -9 -8 10 12 13 3
(2111): -5 9 10 14 13 17 -4
(11111): 1 -2 -2 3 3 -4 1
For example, row 14 gives: m(32) = -5h(5) + 11h(32) + 5h(41) - 11h(221) - 8h(311) + 10h(2111) - 2h(11111).
CROSSREFS
This is a regrouping of the triangle A321748. Row sums are A155972.
Sequence in context: A302538 A228428 A344911 * A321748 A263447 A180303
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 22 2018
STATUS
approved