login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321916
Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in h(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and h is homogeneous symmetric functions.
0
1, -1, 1, 0, 1, 1, -2, 1, 0, -1, 1, 0, 0, 1, -1, 1, 2, -3, 1, 0, 1, 0, -2, 1, 0, 0, 1, -2, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 1, -2, -2, 3, 3, -4, 1, 0, -1, 0, 1, 2, -3, 1, 0, 0, -1, 2, 1, -3, 1, 0, 0, 0, 1, 0, -2, 1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, -1, 1
OFFSET
1,7
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of h(v) in e(u).
EXAMPLE
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): -1 1
(11): 1
.
(3): 1 -2 1
(21): -1 1
(111): 1
.
(4): -1 1 2 -3 1
(22): 1 -2 1
(31): 1 -2 1
(211): -1 1
(1111): 1
.
(5): 1 -2 -2 3 3 -4 1
(41): -1 1 2 -3 1
(32): -1 2 1 -3 1
(221): 1 -2 1
(311): 1 -2 1
(2111): -1 1
(11111): 1
For example, row 14 gives: h(32) = -e(32) + 2e(221) + e(311) - 3e(2111) + e(11111).
CROSSREFS
This is a regrouping of the triangle A321749. Row sums are A134286.
Sequence in context: A016102 A083905 A179319 * A257265 A045706 A045634
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 22 2018
STATUS
approved